Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo.
نویسندگان
چکیده
In the mouse, the initial signals that establish left-right (LR) asymmetry are determined in the node by nodal flow. These signals are then transferred to the lateral plate mesoderm (LPM) through cellular and molecular mechanisms that are not well characterized. We hypothesized that endoderm might play a role in this process because it is tightly apposed to the node and covers the outer surface of the embryo, and, just after nodal flow is established, higher Ca(2+) flux has been reported on the left side near the node, most likely in the endoderm cells. Here we studied the role of endoderm cells in the transfer of the LR asymmetry signal by analyzing mouse Sox17 null mutant embryos, which possess endoderm-specific defects. Sox17(-/-) embryos showed no expression or significantly reduced expression of LR asymmetric genes in the left LPM. In Sox17 mutant endoderm, the localization of connexin proteins on the cell membrane was greatly reduced, resulting in defective gap junction formation, which appeared to be caused by incomplete development of organized epithelial structures. Our findings suggest an essential role of endoderm cells in the signal transfer step from the node to the LPM, possibly using gap junction communication to establish the LR axis of the mouse.
منابع مشابه
Role of the Gut Endoderm in Relaying Left-Right Patterning in Mice
Establishment of left-right (LR) asymmetry occurs after gastrulation commences and utilizes a conserved cascade of events. In the mouse, LR symmetry is broken at a midline structure, the node, and involves signal relay to the lateral plate, where it results in asymmetric organ morphogenesis. How information transmits from the node to the distantly situated lateral plate remains unclear. Noting ...
متن کاملThe homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping.
Left-right asymmetry in vertebrates is controlled by activities emanating from the left lateral plate. How these signals get transmitted to the forming organs is not known. A candidate mediator in mouse, frog and zebrafish embryos is the homeobox gene Pitx2. It is asymmetrically expressed in the left lateral plate mesoderm, tubular heart and early gut tube. Localized Pitx2 expression continues ...
متن کاملFGF8 Acts as a Right Determinant during Establishment of the Left-Right Axis in the Rabbit
BACKGROUND FGF8 has been implicated in the transfer of left-right (L-R) asymmetry from the embryonic midline (node) to the lateral plate mesoderm (LPM). Surprisingly, opposite roles have been described in chick and mouse. In mouse, FGF8 is required for the left-asymmetric expression of nodal, lefty2, and Pitx2. In chick, FGF8 represses nodal and Pitx2 on the right side. This discrepancy could r...
متن کاملThe Dynamic Right-to-Left Translocation of Cerl2 Is Involved in the Regulation and Termination of Nodal Activity in the Mouse Node
The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node...
متن کاملAn Hh-Dependent Pathway in Lateral Plate Mesoderm Enables the Generation of Left/Right Asymmetry
Breaking bilateral symmetry is critical for vertebrate morphogenesis. In the mouse, directional looping of the heart and rotation of the embryo, the first overt evidence of left/right asymmetry (L/R), are observed at early somite stages ( approximately E8.5) [1, 2]. Activation of a Nodal-Pitx2 regulatory pathway specifically within the left lateral plate mesoderm (LPM) is critical for these eve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 139 13 شماره
صفحات -
تاریخ انتشار 2012